Abstract
The purpose of the talk is to describe recent advances in nonlocal electron kinetics in low-pressure plasmas. Low-pressure discharges are widely used in industry as the main plasma sources for many applications including plasma processing, discharge lighting, plasma propulsion, particle beam sources and nanotechnology. Being partially-ionized, bounded, and weakly-collisional, the plasmas in these discharges demonstrate nonlocal electron kinetic effects, nonlinear processes in the sheaths, beam-plasma interaction, collisionless electron heating, etc. Such plasmas often have a non-Maxwellian electron velocity distribution function. The plethora of kinetic processes supporting the non-equilibrium plasma state is an invaluable tool, which can be used to adjust plasma parameters to the specific needs of a particular plasma application. We report on recent advances in nonlocal electron kinetics in low-pressure plasmas where a non-Maxwellian electron velocity distribution function was “designed” for a specific purpose: in dc discharges with auxiliary biased electrodes for plasma control, hybrid DC/RF magnetized and unmagnetized plasma sources, and Hall thruster discharges. We show using specific examples that this progress was made possible by synergy between full-scale particle-in-cell simulations, analytical models, and experiments. Examples of recent progress are described in Special Section of Physics of Plasmas “Electron kinetic effects in low temperature plasmas” [1] and Special Issue of Plasma Sources Science and Technology “Transport in B-fields in low-temperature plasmas” [2].
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.