Abstract

We propose the "Andreev molecule," an artificial quantum system composed of two closely spaced Josephson junctions. The coupling between Josephson junctions in an Andreev molecule occurs through the overlap and hybridization of the junction's "atomic" orbitals, Andreev Bound States. A striking consequence is that the supercurrent flowing through one junction depends on the superconducting phase difference across the other junction. Using the Bogolubiov-de-Gennes formalism, we derive the energy spectrum and nonlocal current-phase relation for arbitrary separation. We demonstrate the possibility of creating a φ-junction and propose experiments to verify our predictions. Andreev molecules may have potential applications in quantum information, metrology, sensing, and molecular simulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call