Abstract
A detailed analysis of forward and inverse energy transfer processes due to the Hall term effect in freely decaying, homogeneous, isotropic Hall magnetohydrodynamics (HMHD) turbulence is performed through Fourier and wavelet analyses. We analyzed three snapshot datasets that were taken from such a period to allow the turbulence to develop sufficiently with a nearly constant magnetic Reynolds number. Because the Fourier energy spectra in these snapshots show remarkable agreement after the normalization in terms of the dissipation rates and the diffusion coefficients, they are considered as a universal equilibrium state. By analyzing the numerical solutions that are generated without any external forcing, it is confirmed that the inverse energy transfer due to the Hall term effect is intrinsic to HMHD dynamics. Orthonormal divergence-free wavelet analysis reveals that nonlinear mode interactions contributing to the inverse energy transfer exhibit a nonlocal feature, while those for the forward transfer are dominated by a local feature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.