Abstract

A widely observed scenario in ecological systems is that populations interact not only with those living in the same spatial location but also with those in spatially adjacent locations, a phenomenon called nonlocal interaction. In this paper, we explore the role of nonlocal interaction in the emergence of spatial patterns in a prey–predator model under the reaction–diffusion framework, which is described by two coupled integro-differential equations. We first prove the existence and uniqueness of the global solution by means of the contraction mapping theory and then conduct stability analysis of the positive equilibrium. We find that nonlocal interaction can induce Turing bifurcation and drive the formation of stationary spatial patterns. Finally we carry out numerical simulations to demonstrate our analytical findings.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.