Abstract

We investigate the limits of applicability of the Spitzer-Harm thermal conductivity in solar coronal loops and show that the ratio λ0/LTof electron mean-free path to temperature scale height in large-scale structures can approach the limits of the Spitzer-Harm theory. We use a non-local formulation of heat transport to compute a grid of loop models: the effects of non-local transport on the distribution of differential emission measure are particularly important in the coronal part of loops longer than the pressure scale height sp.We derive a scaling law for λ0/LTin the corona, showing that it grows exponentially with L/sp, and discuss effects of non-local heat transport in the transition region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.