Abstract

In this paper we discuss nonlocal growth equations such as the generalization of the Kardar–Parisi–Zhang (KPZ) equation that includes long-range interactions, also known as the Nonlocal-Kardar–Parisi–Zhang (NKPZ) equation, and the nonlocal version of the molecular-beam-epitaxy (NMBE) equation. We show that the steady-state strong coupling solution for nonlocal models such as NKPZ and NMBE can be obtained exactly in one dimension for some special cases, using the Fokker–Planck form of these equations. The exact results we derive do not agree with previous results obtained by Dynamic Renormalization Group (DRG) analysis. This discrepancy is important because DRG is a common method used extensively to deal with nonlinear field equations. While difficulties with this method for d>1 has been realized in the past, it has been believed so far that DRG is still safe in one dimension. Our result shows differently. The reasons for the failure of DRG to recover the exact one-dimensional results are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.