Abstract

The recent classical nonlocal generalization of Einstein's theory of gravitation is presented within the framework of general relativity via the introduction of a preferred frame field. The nonlocal generalization of Einstein's field equations is derived. The linear approximation of nonlocal gravity (NLG) is thoroughly examined and the solutions of the corresponding field equations are discussed. It is shown that nonlocality, with a characteristic length scale of order 1 kpc, simulates dark matter in the linear regime while preserving causality. Light deflection in linearized nonlocal gravity is studied in connection with gravitational lensing; in particular, the propagation of light in the weak gravitational field of a uniformly moving source is investigated. The astrophysical implications of the results are briefly mentioned.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call