Abstract

By complexifying the independent variables of the Kaup-Kuperschmidt (KK) equation, we derive the 4+2 integrable extension of the KK equation and its Lax pair. The construction of the associated nonlinear Fourier transform pair comprising both direct and inverse transforms is accomplished by conducting a spectral analysis of the t-independent part of the Lax pair. In the final section, the nonlinear Fourier transform pair will be used, after also taking into account the appropriate time evolution, for solving the Cauchy initial value problem of the three-spatial-dimensions KK equation with two temporal variables.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.