Abstract

The properties are considered in detail of a non-local (integral) equation for the superconducting gap parameter, which is obtained by a coarse-graining procedure applied to the Bogoliubov-deGennes (BdG) equations over the whole coupling-vs-temperature phase diagram associated with the superfluid phase. It is found that the limiting size of the coarse-graining procedure, which is dictated by the range of the kernel of this integral equation, corresponds to the size of the Cooper pairs over the whole coupling-vs-temperature phase diagram up to the critical temperature, even when Cooper pairs turn into composite bosons on the BEC side of the BCS-BEC crossover. A practical method is further implemented to solve numerically this integral equation in an efficient way, which is based on a novel algorithm for calculating the Fourier transforms. Application of this method to the case of an isolated vortex, throughout the BCS-BEC crossover and for all temperatures in the superfluid phase, helps clarifying the nature of the length scales associated with a single vortex and the kinds of details that are in practice disposed off by the coarse-graining procedure on the BdG equations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call