Abstract
When two identical fermions exchange their positions, their wave function gains a phase factor of -1. We show that this distance-independent effect can induce nonlocal entanglement in one-dimensional (1D) electron systems having Majorana fermions at the ends. It occurs in the system bulk and has a nontrivial temperature dependence. In a system having a single Majorana fermion at each end, the nonlocal entanglement has a Bell-state form at zero temperature and decays as the temperature increases, vanishing suddenly at a certain finite temperature. In a system having two Majorana fermions at each end, it is in a cluster-state form and its nonlocality is more noticeable at a finite temperature. By contrast, the thermal states of corresponding 1D spins do not have nonlocal entanglement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.