Abstract
In the present work, thermal buckling of single-layered graphene sheets lying on an elastic medium is analyzed. For this purpose, the sinusoidal shear deformation plate theory in tandem with the nonlocal continuum theory, which takes the small scale effects into account, is employed. The non-linear stability equations, which contain the reaction of Winkler–Pasternak elastic substrate medium, are derived and then solved analytically for a plate with various boundary conditions and based on various plate theories. Closed form solutions are formulated for three types of thermal loadings as uniform, linear and nonlinear temperature rise through the thickness of the plate. A number of examples are presented to illustrate the numerical results concerned with the buckling temperature response of nanoplates resting on two-parameter elastic foundations. The influences played by transversal shear deformation, plate aspect ratio, side-to-thickness ratio, nonlocal parameter, and elastic foundation parameters are all investigated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica E: Low-dimensional Systems and Nanostructures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.