Abstract
The mechanical stability of graphene nanoribbons (GNRs) is an important mechanical property to study, when GNRs are used as components in sensors or other nanodevices. In this paper, nonlocal effects are considered in a continuum model based theoretical analysis of the critical buckling stress of cantilevered double-layer GNRs (DLGNRs) that are subjected to an axial compressive load. The results show that the nonlocal effect has an inverse relationship with the buckling stress, and the nonlocal effect decreases with increasing aspect ratio of DLGNRs. Moreover, to the best of our knowledge this is the first report that, for DLGNRs in anti-phase modes, lower buckling mode can endure higher buckling stress because of van der Waals (vdW) interaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.