Abstract
In this paper we consider a nonlocal elasticity theory defined by Eringen’s integral model and introduce, for the first time, a boundary layer method by presenting the exponential basis functions (EBFs) for such a class of problems. The EBFs, playing the role of the fundamental solutions, are found so that they satisfy the governing equations on an unbounded domain. Some insight to the theory is given by showing that the EBFs satisfying the Navier equations in the classical elasticity theory also satisfy the governing equations in the nonlocal theory. Some additional EBFs are particularly obtained for the nonlocal theory. In order to use the EBFs on bounded domains, the effects of the boundary conditions are taken into account by truncating the kernel/attenuation function in the constitutive equations. This leads to some residuals in the governing equations which appear near the boundaries. A weighted residual approach is employed to minimize the residuals near the boundaries. The method presented in this paper has much in common with Trefftz methods especially when the influence area of the kernel function is much smaller than the main computational domain. Several one/two dimensional problems are solved to demonstrate the way in which the EBFs can be used through the proposed boundary layer method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.