Abstract
This paper presents an investigation on the longitudinal vibration of a double-nanorod-system (DNRS). The double-nanorod-systems are important in nanooptomechanical systems (NOMS). For the development of the governing equations, Eringen’s nonlocal elasticity is utilized. It is assumed that the two nanorods of the DNRS are coupled by longitudinally directed distributed springs. An analytical method is developed for solving the nonlocal frequencies of longitudinally vibrating DNRS. Clamped–clamped and clamped–free boundary conditions are employed and their explicit relationships are derived. Numerical studies are carried out for coupled double-carbon-nanotube-rod system. This study highlights that the nonlocal effect considerably influences the axial vibration of DNRS. The results obtained in this paper can be useful for the study of axially vibrating complex multiple-nanobeam system in NOMS.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Physica E: Low-dimensional Systems and Nanostructures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.