Abstract

The authors analyze electromagnetic modes in multilayered nanocomposites and demonstrate that the response of a majority of realistic layered structures is strongly affected by the nonlocal effects originating from strong field oscillations across the system, and is not described by conventional effective-medium theories. They develop the analytical description of the relevant phenomena and confirm their results with numerical solutions of Maxwell equations. Finally, the authors use the developed formalism to demonstrate that multilayered plasmonic nanostructures support high-index volume modes, confined to deep subwavelength areas, opening a wide class of applications in nanoscale light management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.