Abstract

On the basis of the formalism of the Boltzmann kinetic equation for the distribution function of the conduction electrons, the photonic band structure of binary dielectric-metal superlattice is theoretically studied. Using the constitutive nonlocal relation between the electrical current density and the electric field inside the metallic layer, the dispersion equation for photonic eigenmodes in the periodic stack is analytically expressed in terms of the surface impedances at the interfaces of the metal and dielectric layers. In the case of very thin metallic layers, the optic spectrum for the superlattice exhibits narrow pass bands as a result of the strong contrast between the impedances of the dielectric and the metal. The narrow pass bands are attributed to Fabry-Perot resonances in the relatively-thick dielectric layer. The metal nonlocality is well pronounced in the infrared and, therefore, the nonlocal effect upon the photonic band structure of the superlattice can be strong when the Fabry-Perot resonance bands are in that frequency range. Our results for the photonic spectrum have been compared with those obtained within the local Drude-Lorentz model. Noticeably differences not only in the the magnitude, but also in the sign of the real part of the Bloch wave number in the Fabry-Perot resonance bands, have been found.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.