Abstract

Theoretical methods that are accurate for both short-distance observables and long-wavelength collective modes are still being developed for the Hubbard model. Here, we benchmark an approach that combines dynamical mean-field theory (DMFT) observables with the two-particle self-consistent theory (TPSC). This offers a way to include non-local correlations in DMFT while also improving TPSC. The benchmarks are published diagrammatic quantum Monte Carlo results for the two-dimensional square lattice Hubbard model with nearest-neighbor hopping. This method (TPSC+DMFT) is relevant for weak to intermediate interaction, satisfies the local Pauli principle and allows us to compute a spin susceptibility that satisfies the Mermin-Wagner theorem. The DMFT double occupancy determines the spin and charge vertices through local spin and charge sum rules. The TPSC self-energy is also improved by replacing its local part with the local DMFT self-energy. With this method, we find improvements for both spin and charge fluctuations and for the self-energy. We also find that the accuracy check developed for TPSC is a good predictor of deviations from benchmarks for this model. TPSC+DMFT can be used in regimes where quantum Monte Carlo is inaccessible. In addition, this method paves the way to multi-band generalizations of TPSC that could be used in advanced electronic structure codes that include DMFT.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call