Abstract
A study of the influence of the chemoionization processes on nonstationary gas-discharge conductivity has been performed. Due to energetic, suprathermal electrons, which appear in the chemoionization reactions, the highly nonequilibrium and time dependent nonlocal electron distribution function is formed. In such gas-discharge plasma, thermal electrons always have positive conductivity, while suprathermal, energetic electrons may have negative conductivity in heavy (argon, krypton, and xenon) noble gases dependent on conditions, which may lead to the nonmonotonic temporal behavior of gas-discharge plasma conductivity and potentially may create the absolute negative conductivity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.