Abstract
The failure of a discrete elastic-damage axial system is investigated using both a discrete and anequivalent continuum approach. The discrete damage mechanics (DDM) approach is based on amicrostructured model composed of a series of periodic elastic-damage springs (axial DDM latticesystem). Such a damage discrete system can be associated with the finite difference formulation of aContinuum Damage Mechanics (CDM) evolution problem.The nonlocal CDM models considered in this paper are mainly built from a continualizationprocedure applied to centered finite difference schemes. A comparison of the discrete and thecontinuous problems for the chains shows the effectiveness of the new micromechanics-basednonlocal Continuum Damage modeling, especially for capturing scale effects.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.