Abstract
We compute the one-loop contributions to spin-averaged generalized parton distributions (GPDs) in the proton from pseudoscalar mesons with intermediate octet and decuplet baryon states at nonzero skewness. Our framework is based on nonlocal covariant chiral effective theory, with ultraviolet divergences regularized by introducing a relativistic regulator derived consistently from the nonlocal Lagrangian. Using the splitting functions calculated from the nonlocal Lagrangian, we find the nonzero skewness GPDs from meson loops by convoluting with the phenomenological pion GPD and the generalized distribution amplitude, and verify that these satisfy the correct polynomiality properties. We also compute the lowest two moments of GPDs to quantify the meson loop effects on the Dirac, Pauli, and gravitational form factors of the proton. Published by the American Physical Society 2024
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.