Abstract
AbstractThis work focuses on characterizing scenery images. We semantically divide the objects in natural landscape scenes into background and foreground and show that the shapes of the regions associated with these two types are statistically different. We then focus on the background regions. We study statistical properties such as size and shape, location and relative location, the characteristics of the boundary curves and the correlation of the properties to the region’s semantic identity. Then we discuss the imaging process of a simplified 3D scene model and show how it explains the empirical observations. We further show that the observed properties suffice to characterize the gist of scenery images, propose a generative parametric graphical model, and use it to learn and generate semantic sketches of new images, which indeed look like those associated with natural scenery.KeywordsNatural ImageBackground RegionLand RegionForeground ObjectAerial ImageThese keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.