Abstract

In this work we investigate the existence of solutions for semilinear Cauchy problems with nonlocal initial conditions in the neighborhood of an asymptotically stable equilibrium point of the evolution equation. Using Granas' continuation principle for contractive maps and the qualitative theory of differential equations in Banach spaces, under mild assumptions, we prove the existence of a unique solution. We also show that the main abstract result can be applied to nonlocal initial boundary value problems for reaction–diffusion equations with non-convex nonlinearities.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.