Abstract
Here we consider a Cahn-Hilliard-Navier-Stokes system characterized by a nonlocal Cahn-Hilliard equation with a singular (e.g., logarithmic) potential. This system originates from a diffuse interface model for incompressible isothermal mixtures of two immiscible fluids. We have already analyzed the case of smooth potentials with arbitrary polynomial growth. Here, taking advantage of the previous results, we study this more challenging (and physically relevant) case. We first establish the existence of a global weak solution with no-slip and no-flux boundary conditions. Then we prove the existence of the global attractor for the 2D generalized semiflow (in the sense of J.M. Ball). We recall that uniqueness is still an open issue even in 2D. We also obtain, as byproduct, the existence of a connected global attractor for the (convective) nonlocal Cahn-Hilliard equation. Finally, in the 3D case, we establish the existence of a trajectory attractor (in the sense of V.V. Chepyzhov and M.I. Vishik).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.