Abstract

We consider a non-local version of the Cahn–Hilliard equation characterized by the presence of a fractional diffusion operator, and which is subject to fractional dynamic boundary conditions. Our system generalizes the classical system in which the dynamic boundary condition was used to describe any relaxation dynamics of the order-parameter at the walls. The proposed fractional dynamic boundary condition appears to be more general in the sense that it incorporates non-local effects which were completely ignored in the classical approach. We aim to deduce well-posedness and regularity results as well as to establish the existence of finite-dimensional attractors for this system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.