Abstract

We theoretically studied the nonlocal Andreev reflection with Rashba spin—orbital interaction in a triple-quantum-dot (QD) ring, which is introduced as Rashba spin—orbital interaction to act locally on one component quantum dot. It is found that the electronic current and spin current are sensitive to the systematic parameters. The interdot spin-flip term does not play a leading role in causing electronic and spin currents. Otherwise the spin precessing term leads to shift of the peaks of the the spin-up and spin-down electronic currents in different directions and results in the spin current. Moreover, the spin-orbital interaction suppresses the nonlocal Andreev reflection, so we cannot obtain the pure spin current.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.