Abstract

We study the continuum limit of a nonlinear Schrödinger lattice model with both on-site and inter-site nonlinearities, describing weakly coupled optical waveguides or Bose–Einstein condensates. The resulting continuum nonlinear Schrödinger-type equation includes both nonlocal and nonlinear dispersion. Looking for stationary solutions, the equation is reduced to an ordinary differential equation with a rescaled spectral parameter and a single parameter interpolating between the nonlocality and the nonlinear dispersion. It is seen that these two effects give a similar behaviour for the solutions. We find smooth solitons and, beyond a critical value of the spectral parameter, also nonanalytic solitons in the form of peakons and capons. The existence of the exotic solitons is connected to the special properties of the phase space of the equation. Stability is investigated numerically by calculating eigenvalues and eigenfunctions of the linearized problem, and we particularly find that with both nonlocal and nonlinear dispersion simultaneously present, all solutions are unstable with respect to a break-up into short-wavelength oscillations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.