Abstract

Based on the nonlocal elasticity theory, the static bending deformation of a functionally graded multilayered one-dimensional (1D) hexagonal piezoelectric quasicrystal (PQC) simply supported nanoplate is investigated under surface mechanical loadings. The functionally graded material is assumed to be exponential along the thickness direction. By utilizing the pseudo-Stroh formalism and propagator matrix method, exact closed-form solutions of functionally graded multilayered 1D hexagonal PQC nanoplates are then obtained by assuming that the layer interfaces are perfectly contacted. Numerical examples for six kinds of sandwich functionally graded nanoplates made up of piezoelectric crystals, quasicrystal and PQC are presented to illustrate the influence of the exponential factor, nonlocal parameter and stacking sequence on the phonon, phason and electric fields, which play an important role in designing new composite structures in engineering.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.