Abstract

Texture segmentation is a very important subject in the fields of computer vision. In order to segment the textures, active contour model based on nonlocal means method and tikhonov regularization is proposed. In detail, a new nonlocal tikhonov regularization smoothness term is added. The nonlocal operator is based on the image slice similarity. So better segmentation accuracy can be achieved for the images which contain special texture features. The good matter of our method is not only nonlocal operator added but also the original tikhonov regularization smoothness item based on the pixel values retained. The nonlocal operator is time consuming, while the reserved smoothness term can save time to some extent. The traditional active contour model can only be used to segment the conventional images. The nonlocal active contour model can dispose the textures well. What's more, in order to improve the computation efficiency, this paper designs the Split-Bregman algorithm. At last, our performance is demonstrated by segmenting many real texture images.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.