Abstract
This paper is concerned with instability of flow fields which are dominated by the entropy mode with the presence of usual acoustic and vortical modes. These combined modes lead to nonlinear unstable waves which may occur in automobile, aircraft, or rocket engines. In this study instability in a side-burning rocket is investigated. It is shown that the energy growth rate parameters increase with an increase of the energy growth factor. The energy growth rate parameters for turbulent flows are larger than those for laminar flows. It is further shown that unstable wave motions for the high-temperature side-burning rocket are dictated mostly by the entropy mode, somewhat by the vortical mode, and least by the acoustic mode.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.