Abstract

The discrete Ablowitz–Ladik hierarchy with four potentials and the Hamiltonian structures are derived. Under a constraint between the potentials and eigenfunctions, the nonlinearization of the Lax pairs associated with the discrete Ablowitz–Ladik hierarchy leads to a new symplectic map and a class of finite-dimensional Hamiltonian systems. The generating function of the integrals of motion is presented, by which the symplectic map and these finite-dimensional Hamiltonian systems are further proved to be completely integrable in the Liouville sense. Each member in the discrete Ablowitz–Ladik hierarchy is decomposed into a Hamiltonian system of ordinary differential equations plus the discrete flow generated by the symplectic map.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.