Abstract

Flexible pressure sensors are indispensable components in various applications such as intelligent robots and wearable devices, whereas developing flexible pressure sensors with both high sensitivity and wide linear range remains a great challenge. Here, we present an elegant strategy to address this challenge by taking advantage of a pyramidal carbon foam array as the sensing layer and an elastomer spacer as the stiffness regulator, realizing an unprecedentedly high sensitivity of 24.6 kPa−1 and an ultra-wide linear range of 1.4 MPa together. Such a wide range of linearity is attributed to the synergy between the nonlinear piezoresistivity of the sensing layer and the nonlinear elasticity of the stiffness regulator. The great application potential of our sensor in robotic manipulation, healthcare monitoring, and human-machine interface is demonstrated. Our design strategy can be extended to the other types of flexible sensors calling for both high sensitivity and wide-range linearity, facilitating the development of high-performance flexible pressure sensors for intelligent robotics and wearable devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.