Abstract

We report on the demonstration of an effective, nonlinearity-induced non-reciprocal behavior in a single non-magnetic multi-mode Taiji resonator. Non-reciprocity is achieved by a combination of an intensity-dependent refractive index and of a broken spatial reflection symmetry. Continuous wave power dependent transmission experiments show non-reciprocity and a direction-dependent optical bistability loop. These can be explained in terms of the unidirectional mode coupling that causes an asymmetric power enhancement in the resonator. The observations are quantitatively reproduced by a numerical finite-element theory and physically explained by an analytical coupled-mode theory. This nonlinear Taiji resonator has the potential of being the building block of large arrays where to study topological and/or non-Hermitian physics. This represents an important step towards the miniaturization of nonreciprocal elements for photonic integrated networks.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call