Abstract
Wave propagation in metamaterial honeycombs endowed with periodically distributed nonlinear resonators is addressed. The linear and nonlinear dispersion properties of the metamaterial are investigated. The nonlinear wave propagation equations obtained via a projection method and the Floquet–Bloch theorem are attacked by the method of multiple scales to obtain in closed form the nonlinear manifolds parametrized by the amplitudes, the frequency, and the wave numbers. The effects of the nonlinearity on the frequency bandgaps are thoroughly investigated and the optimization problem of the resonators nonlinearity towards increased bandgap size is tackled to provide a significant practical framework for the design of nonlinear metamaterials.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.