Abstract

We study the nonlinear interfacial thermal transport across atomic junctions by the quantum self-consistent mean-field (QSCMF) theory based on the nonequilibrium Green's function approach; the QSCMF theory we propose is very precise and matches well with the exact results from quantum master equation. The nonlinearity at the interface is studied by effective temperature-dependent interfacial coupling calculated from the QSCMF theory. We find that nonlinearity can provide an extra channel for phonon transport in addition to the phonon scattering which usually blocks heat transfer. For weak linearly coupled interface, the nonlinearity can enhance the interfacial thermal transport; with increasing nonlinearity or temperature, the thermal conductance shows nonmonotonical behavior. The interfacial nonlinearity also induces thermal rectification, which depends on the mismatch of the two leads and also the interfacial linear coupling.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call