Abstract

A nonlinearity-aware signal transmission scheme based on a low-complexity 3rd-order diagonally pruned absolute-term nonlinear equalizer (NLE) with weight sharing (DP-AT-NLE-WS) and rate-adaptable probabilistically shaped 16-level pulse amplitude modulation (PS-PAM-16) signal is proposed and experimentally demonstrated for C-band net-300-Gbit/s/λ short-reach optical interconnects. By replacing the multiplication operation with the absolute operation and applying weight sharing to reduce the kernel redundancy, the computational complexity of the proposed 3rd-order DP-AT-NLE-WS is reduced by >40% compared with the 3rd-order DP-Volterra NLE (DP-VNLE), DP-AT-NLE, and DP-VNLE-WS, with the achieved normalized general mutual information (NGMI) above a threshold of 0.857. Employing a commercial 32-GHz Mach-Zehnder modulator (MZM) and a single digital-to-analog converter (DAC), we demonstrate the single-lane transmission of 100-GBaud PS-PAM-16 signal using DP-AT-NLE-WS in the C band at record 370-Gbit/s line rate and 300.4-Gbit/s net rate over 1-km standard single-mode fiber (SSMF), achieving 21.2% (15.5%) capacity improvement over 100 (105)-GBaud PAM-8 transmission. To the best of our knowledge, this is the first net-300-Gbit/s intensity modulation and direct detection (IM/DD) short-reach transmission in the C band using commercially available components.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.