Abstract

We have investigated the laser fluence dependence of the ion emission process in ultrafast laser ablation of graphite using a time-of-flight technique. Two regimes of ion emission have been identified: (1) a highly nonlinear laser absorption process accompanied by generation of a transient electrical field on the surface and collisionless emission of ions due to electrostatic repulsion; (2) a saturation regime for laser power absorption characterised by nearly equal kinetic energy of ejected carbon clusters. We also show the effect of the surface temperature on the emitted clusters’ stability and the influence of nonlinearity on the intensity autocorrelation traces.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call