Abstract

<inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mathbb {Z}_{2^{s}}$ </tex-math></inline-formula> -additive codes are subgroups of <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mathbb {Z}^{n}_{2^{s}}$ </tex-math></inline-formula> , and can be seen as a generalization of linear codes over <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mathbb {Z}_{2}$ </tex-math></inline-formula> and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mathbb {Z}_{4}$ </tex-math></inline-formula> . A <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mathbb {Z}_{2^{s}}$ </tex-math></inline-formula> -linear code is a binary code (not necessarily linear) which is the Gray map image of a <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mathbb {Z}_{2^{s}}$ </tex-math></inline-formula> -additive code. We consider <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mathbb {Z}_{2^{s}}$ </tex-math></inline-formula> -additive simplex codes of type <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\alpha $ </tex-math></inline-formula> and <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\beta $ </tex-math></inline-formula> , which are a generalization over <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mathbb {Z}_{2^{s}}$ </tex-math></inline-formula> of the binary simplex codes. These codes are related to the <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mathbb {Z}_{2^{s}}$ </tex-math></inline-formula> -additive Hadamard codes. In this paper, we use this relationship to find a linear subcode of the corresponding <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mathbb {Z}_{2^{s}}$ </tex-math></inline-formula> -linear codes, called kernel, and a representation of these codes as cosets of this kernel. In particular, this also gives the linearity of these codes. Similarly, <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$\mathbb {Z}_{2^{s}}$ </tex-math></inline-formula> -additive MacDonald codes are defined for <inline-formula xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink"> <tex-math notation="LaTeX">$s&gt;2$ </tex-math></inline-formula> , and equivalent results are obtained.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call