Abstract

The nonlinearity of lung tissues and airways was studied in six anesthetized and paralyzed open-chest dogs by means of 0.1-Hz sinusoidal volume forcing at mean transpulmonary pressures (Ptp) of 5 and 10 cmH2O. Lung resistance (RL) and elastance (EL) were determined in a 32-fold range (15-460 ml) of tidal volume (VT), both by means of spectrum analysis at the fundamental frequency and with conventional time-domain techniques. Alveolar capsules were used to separate the tissue and airway properties. A very small amplitude dependence was found: with increasing VT, the frequency-domain estimates of RL decreased by 5.3 and 14%, whereas EL decreased by 20 and 22% at Ptp = 5 and 10 cmH2O, respectively. The VT dependences of the time-domain estimates of RL were higher: 10.5 and 20% at Ptp = 5 and 10 cmH2O, respectively, whereas EL remained the same. The airway resistance increased moderately with flow amplitude and was smaller at the higher Ptp level. Analysis of the harmonic distortions of airway opening pressure and the alveolar pressures indicated that nonlinear harmonic production is moderate even at the highest VT and that VT dependence is homogeneous throughout the tissues. In three other dogs it was demonstrated that VT dependences of RL and EL were similar in situ and in isolated lungs at both Ptp levels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.