Abstract

Machine learning (ML) methodologies gave an innovative and realistic direction to cope up with nonlinearity issues in fiber optics communication. In this paper, a 40-Gb/s 128-quadrature amplitude modulation (QAM) signal based Radio over Fiber (RoF) system is experimentally evaluated for 70 km of standard single mode fiber length which utilizes support vector machine (SVM) decision method to indicate an effective nonlinearity mitigation. The influence of different impairments in the system is evaluated that includes the influences of Mach-Zehnder Modulator nonlinearities, in-phase and quadrature phase skew of the modulator, input signal power and noise due to amplified spontaneous emission. By employing SVM, the results demonstrated in terms of bit error rate and eye linearity suggest that impairments are significantly reduced and licit input signal power span of 5dBs is enlarged to 15 dBs.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.