Abstract
A nonlinear frequency division multiplexing (NFDM) transmission system, designed specifically for nonlinear fiber channel, has the potential to overcome the nonlinear Shannon capacity limit. However, the spectral efficiency (SE) of the current proven NFDM transmission systems is still lower than that of the analogous orthogonal frequency division multiplexing system. It is extremely necessary to explore effective modulation scheme for the aim of increasing the SE of NFDM system. In this study, we first propose the nonlinear-frequency-packing nonlinear frequency division multiplexing (NFP-NFDM) transmission system. In NFP-NFDM, the spacing of nonlinear subcarriers is squeezed and more nonlinear subcarriers can be packed, but the inter carrier interference (ICI) is introduced. The method of NFP in nonlinear Fourier domain is carefully designed to reduce the complexity of ICI cancellation. Through numerical simulation, we illustrate the feasibility of NFP-NFDM transmission, and higher SE in NFP-NFDM than that of NFDM system is also demonstrated. The upper bound of the normalized SE for NFP-NFDM is estimated, which is higher than that of current NFDM system. Besides, we find out that the NFP scheme may have the advantage of reducing the signal-noise interaction in fiber transmission scenario, which indicates there may be a better way to load the data into the nonlinear Fourier domain.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.