Abstract

Molecular dynamics (MD) simulations show that single walled carbon nanotube (SWCNT) under uniaxial deformation, behaves as nonlinear elastic thin cylinder, prior to buckling or fracture. While the stress-stretch response is independent of diameter and length of the SWCNT, we found that it is dependent on the chirality of SWCNT. A continuum membrane-shell model is proposed for SWCNT. The parameters of this equation are calibrated from results of molecular dynamics. It is found that the membrane-shell model recovers the stress-stretch behavior of SWCNT as obtained from MD simulation. We could hence adopt the continuum membrane shell model to simulate the non-linear response of SWCNT, at a fraction of the simulation time of MD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call