Abstract

A possible improvement of a continuum model for diatomic crystals is examined using continuum limit of a discrete diatomic model. For this purpose, various discrete models of diatomic lattice are compared at the linearized and weakly nonlinear levels. The suitable numbering of the atoms in the lattice is found which is better adopted for continualization than the familiar pair numbering introducing two sub-lattices. The coupled governing partial nonlinear differential equations for longitudinal strain and relative distance between the atoms are obtained in the continuum limit that allows us to describe localization of the strains due to the presence of the atoms of two kinds. It is found, that the equations obtained possess two kinds of localized wave solutions, one related to the acoustical branch and the other one related to the optical branch.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.