Abstract

Flexible elastic metamaterials can be described as artificial structures, designed to be highly compliant and capable of withstanding large elastic deformations. Their current significance lies in the fact that they possess a number of unusual properties that can be controlled and, in addition, they belong to an extremely large design space. While their static character has been widely studied, their dynamic properties are still in their early stages, especially with regard to their non-linear dynamics. Nevertheless, we recall here that these non-linear properties can be designed in a rational way, allowing the development of metamaterials for the control of large amplitude elastic waves [1-5]. In this context, I synthesize in this talk a set of our recent results on the propagation of nonlinear waves in these flexible elastic metamaterials [1-10], and I will draw up possible perspectives from these initiated directions, ranging from vibration control, toy models for fundamental wave physics, to possible practical applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call