Abstract

Abstract Nonlinear wave propagation in large extra spatial dimensions (on and above d = 2) is investigated in the context of nonlinear electrodynamics theories that depend exclusively on the invariant F. In this vein, we consider propagating waves under the influence of external uniform electric and magnetic fields. Features related to the blackbody radiation in the presence of a background constant electric field such as the generalization of the spectral energy density distribution and the Stefan-Boltzmann law are obtained. Interestingly enough, anisotropic contributions to the frequency spectrum appear in connection to the nonlinearity of the electromagnetic field. In addition, the long wavelength regime and Wien’s displacement law in this situation are studied. The corresponding thermodynamics quantities at thermal equilibrium, such as energy, pressure, entropy, and heat capacity densities are contemplated as well.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.