Abstract
The focus of present study is on water waves generated by landslides. Because such problems involve moving boundaries and large deformation of the computational domain, a 2-D numerical model is established with a meshless method and a fully nonlinear Lagrangian time marching scheme. The method chosen in this study is a RBF collocation method developed in the way that the collocations of both the governing equation and boundary conditions are applied at each of the boundary points. This guarantees the accuracies of the partial derivatives of the velocity potential near the free surface, which results in the precise prediction of the free surface. A very effective treatment is proposed for the landslide boundary in this study. Present model is verified by comparing the numerical results of waves generated by a submerged landslide with other numerical solutions, including those obtained using the BIEM and Boussinesq-type models. Fairly good agreements are observed. Present model is then applied to simulate subaerial landslide-induced waves. Various slopes are considered. The landslide-induced wave propagation and shoreline motions are examined. The effects of sliding horizontal distance along a given slope on the induced wave are also discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.