Abstract

This article is aimed to investigate the geometrically nonlinear wave propagation of nano-beams on the basis of the most comprehensive size-dependent elasticity theory. To this end, the integral model of nonlocal elasticity theory in the most general form without any simplification in conjunction with the modified strain gradient theory is implemented in the analysis. Also, the Timoshenko beam model is utilized in the presented nonlocal strain gradient elasticity theory. By Hamilton’s principle, the governing integro-partial differential equations of motion are derived. Employing numerical integration and an efficient method called as periodic grid technique, a semi-analytical approach is presented for the solution procedure. To detect the impacts of nonlocality and small scale effects on the nonlinear wave propagation characteristics of beams at nanoscale, adequate numerical examples and comparison studies are presented.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.