Abstract
In the coastal ocean, the interaction of barotropic tidal currents with topographic features such as the continental shelf, sills in narrow straits, and bottom ridges are often observed to generate large amplitude, horizontally propagating internal solitary waves. These are long nonlinear waves and hence can be modeled by equations of the Korteweg–de Vries type. Typically they occur in regions of variable bottom topography, with the consequence that the appropriate nonlinear evolution equation has variable coefficients. Further, as these waves can be long‐lived it is necessary to take account of the effects of the Earth's background rotation. We review this family of model evolution equations and some of their pertinent solutions, obtained both asymptotically and numerically.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.