Abstract
For the DC-DC Boost converter system, this paper employs the finite-time control technique to design a new nonlinear fast voltage regulation control algorithm. Compared with the existing algorithm, the main advantage of the proposed algorithm lies in the fact that it can offer a fast convergent rate, i.e., finite-time convergence. Based on the average state space model of Boost converter system and finite-time control theory, rigorous stability analysis showed that the output voltage converges to the reference voltage in a finite time. Simulation results demonstrate the efficiency of the proposed method. Compared with PI control algorithm, it is shown that the proposed algorithm has a faster regulation performance and stronger robust performance on load-variation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.