Abstract

In repeating tensile tests with increasing maximum strain for every loading cycle the hemp/lignin composites clearly showed a nonlinear behavior and hysteresis loops in loading and unloading. The explanation for this behavior is the inherent viscoelastic nature for this type of material, but also noticeable stiffness degradation with increasing strain level. Creep tests performed at different stress levels revealed a nonlinear viscoelastic response and after recovery viscoplastic strain was detected for high stress levels. It is demonstrated that Schapery’s model is suitable to model nonlinear viscoelasticity whereas viscoplastic strain may be described by a nonlinear functional presented by Zapas and Crissman. In a creep test this functional leads to a power law with respect to time and stress. In order to include stiffness reduction due to damage Schapery’s model has been modified by incorporating a maximum strain-state dependent function reflecting the elastic modulus reduction with increasing strain measured in tensile tests. A generalized incremental model of the constitutive equation for viscoelastic case has been used to validate the developed material model in a linear stress controlled loading and unloading ramp. The model successfully describes the main features for the investigated material and shows good agreement with test data within the considered stress range.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.