Abstract
This work discusses the first set of rheometric measurements carried out on commercially accessible juvenile and aged skin models under large amplitude oscillatory shear deformations. The results were compared with those of native male whole human and dermis-only foreskin specimens, catering to a few ages from 0.5 to 68 years, including specimens from a 23-year-old male abdomen. At large strains, strain thinning was more pronounced for the dermis of the young skins and for their whole skin counterparts. An inverse qualitative tendency was observed for the adult skins and the skin models. This can be explained by the high dermal collagen compactness associated with an incomplete epidermal proliferation. The qualitative Lissajous plots as well as the quantitative dimensionless indices analyzed using the MITlaos software indicated predominant nonlinear intracycle elastic strain stiffening and viscous shear thinning for all the native specimens at the maximum deformation. For the full thickness models, we have evidence of structure collapse and yielding under similar conditions. The whole skin specimen from the 68-year-old male showed smaller age-dependent nonlinear elastic contributions than the dermis, which we relate to the epidermal degeneration taking place during aging. Regardless of the age group, the models manifested more pronounced intercycle and intracycle elastic nonlinearities, and their magnitudes were significantly larger. The nonlinear elastic trends will serve as advanced standards for understanding and delineating the mechanical limits of destructive and non-destructive deformations of such unique biomaterials.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of the Mechanical Behavior of Biomedical Materials
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.